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We present analytical results for the finite-size scaling in d-dimensional O�N� systems with strong anisotropy
where the critical exponents �e.g., �� and ��� depend on the direction. Prominent examples are systems with
long-range interactions, decaying with the interparticle distance r as r−d−� with different exponents � in
corresponding spatial directions, systems with space-“time” anisotropy near a quantum critical point, and
systems with Lifshitz points. The anisotropic properties involve also the geometry of the systems. We consider
O�N� systems in the N→� limit, confined to a d-dimensional layer with geometry Lm��n ;m+n=d and
periodic boundary conditions across the finite m dimensions. The arising difficulties are avoided using a
technique of calculations based on the analytical properties of the generalized Mittag-Leffler functions.
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I. INTRODUCTION

Anisotropic systems are omnipresent in soft matter and
solid state physics. Prominent examples are liquid crystals,
dipolar-coupled uniaxial ferromagnets, systems with Lifshitz
points, systems with space -“time” anisotropy near a quan-
tum critical point, systems with long-range interactions de-
caying with the interparticle distance r as r−d−� with different
exponents � in corresponding spatial directions, and some
dynamical systems �1–3�. Specific problems arise in the con-
sideration of critical phenomena in such systems. In any of
the cases the fundamental idea of scaling must be modified
in an appropriate way. In terms of the correlation length one
can distinguish two types of anisotropy: weak and strong
�see, e.g., �4��. In weakly anisotropic systems, the correlation
length has spatially dependent amplitude. In the strongly an-
isotropic systems, in addition, the critical exponents �e.g., ��

and ��� depend on the direction. A more general definition
based on an anisotropic scale covariance of the n-point cor-
relators and different exhaustive examples can be seen also
in Ref. �3�. In �3� a general approach to scale invariance in
infinite volume systems with strong anisotropy has been de-
veloped.

The object of the present paper is scaling in finite-size
systems. Our consideration is in the framework of the
O�N�-vector model in the N→� limit where the model is
exactly solvable. This model �equivalent to the spherical
model � has been a classical example in finite-size scaling
investigations starting from the seminal works �5,6�.

In contrast to the theory of finite-size scaling in isotropic
systems �see, e.g., �7,8�� and weakly anisotropic systems
�see, e.g., �9� and references therein�, the theory of finite-size
scaling in strongly anisotropic systems �see �10–17�� is still a
field where the lack of results obtained in the framework of
simplified and analytically tractable models is noticeable.
There exist by now quite a few examples �13,14,17� where
the predictions of an anisotropic finite-size scaling hypoth-
esis have been reproduced analytically. In �13,14� anisotropy
appears near a quantum critical point as a result of mapping

of a “time” dependent problem �in d dimensions� to a
“static” problem �in d+1 dimensions�. In �17� it is due to the
spatial direction dependence of the interactions.

Recently �18� a recipe for studying finite-size effects
based on some useful properties of the generalized Mittag-
Leffler functions has been suggested. It allows one to con-
sider isotropic and some strongly anisotropic systems �in-
cluding long-range quantum systems� on an equal footing.
The interest in Mittag-Leffler functions has grown up be-
cause of their applications in some finite-size scaling prob-
lems �see, e.g., �7,8,18–20��. The present study �see also
�21�� is an illustration of the rare possibility to handle the
final expressions of the scaling equations for strongly aniso-
tropic systems analytically. This readily generalizes some
isotropic finite-size scaling results also to the anisotropic
case.

II. THE MODEL

We restrict our attention to the N-vector spin models de-
fined on a lattice. The Hamiltonian of the model reads

H = − N�
x,y

J�x − y��x
� · �y

� , �2.1�

where �x
� is a classical N-component unit vector defined at

site x of the lattice and the spin-spin coupling decays with
different power laws in different lattice directions. We as-
sume a d-dimensional system with mixed geometry �finite
and infinite dimensions� under periodic boundary conditions
in the finite dimensions. The interaction between spins enters
the expressions of the theory only through its Fourier trans-
form. We will consider the following anisotropic small-q ex-
pansion of the Fourier transform of the spin-spin coupling:

J�q� � J�0� + a��q��2� + a��q��2�, �2.2�

where the first m directions �called “transverse” and denoted
by �� are kept finite and the remaining n directions �called
“parallel” and denoted by the subscript �� are extended to
infinity, with m+n=d, a� and a� are metric factors, and
� ,��0. Further we will use the symbol Lm�����n��� in
order to present the system under consideration. In the finite*Electronic address: tonchev@issp.bas.bg
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directions the corresponding summations are over the vector
q�= 	q�1 , . . . ,q�m
 that takes values in �m defined by q��

=2�n� / �aN0� and −�N0−1� /2	n�	 �N0−1� /2 ,�=1, . . . ,m.
In the infinite directions the sums are substituted with nor-
malized integrals over the corresponding part ofthe first Bril-
louin zone �− �

a , �
a
�n. For our further purposes let us recall

that a finite linear dimension L=N0a in the continuous limit
means that the lattice spacing a→0 and simultaneously N0
→�. In our analysis we assume a�=a� =−1/2.

Recently such type of system, focusing on the shape de-
pendence of the finite-size scaling limit, is considered in Ref.
�17� �with 0
�, �
1�. In the large-N limit, the theory is
solved in terms of the gap equation for the parameter �V
related with the finite-volume correlation length of the sys-
tem. The bulk system is characterized by a vanishing ��, so
that the appropriately scaled inverse critical temperature

�c =
1

�2��d�
�− �/a�d

��/a�d dq

�q��2� + �q��2� �2.3�

is finite whenever the effective dimensionality D=m /�
+n /� is greater than 2. The corresponding critical exponents
�� and �� associated with the behavior of the infinite system
are

�� =
1

��D − 2�
, �� =

1

��D − 2�
. �2.4�

For more details see Ref. �17�. Let us note that the case �
=��1 will be referred to as “weak” anisotropy �see Eq.
�2.2��.

III. THE GAP EQUATION FOR THE REFERENCE
SYSTEM

For the system with mixed geometry Lm�����n��� the
gap equation has the form

� =
1

�2��n

1

Lm�
�− �/a�n

��/a�n

�
q���m

dnq�

�q��2� + �q��2� + �V
. �3.1�

Our analysis will be limited to systems with an effective
dimension D below the upper critical dimension Du=4 and
above the lower critical one, Dl=2, i.e., for a real dimension
d:

2� + n�1 −
�

�
 
 d 
 4� + n�1 −

�

�
, d = m + n .

�3.2�

From the physical point of view, the infinite
n-dimensional system, which has a finite size L in the re-
maining m dimensions, can be found in three qualitatively
different situations depending on the value of n

� : �i� If 2



n
� , then the system is above its lower critical dimension

dl=2� and, therefore, it exhibits a true critical behavior. A
crossover from n-dimensional to d-dimensional critical be-
havior takes place when L→�. �ii� In the borderline case of
n=2�, the system is at its lower critical dimension and may
have only a zero-temperature critical point. �iii� When n

�


2, the system is below its lower critical dimension and a �
d-dimensional� critical behavior appears only in the thermo-
dynamic limit L→�.

We assume that there is no phase transition for finite L,
and in the present study henceforth n
2�. For n
2� and
�V→0, due to the convergence of the integral in Eq. �3.1�
over q�, one can extend the integration over all Rn in consis-
tence with the underlying continuum field theory.

Further, the corresponding n-dimensional integral can be
presented as

1

�2��n

Sn

Lm�
0

�

�
q���m

pn−1dp

�q��2� + p2� + �V
, �3.3�

where Sn=2���n/2 /�n /2� is the surface of the n-dimensional
unit sphere. With the help of the identity:

�
0

� p�−1dp

t + p� + �q���
=

�1 −
�

�
��

�


�

1

�t + �q����1−�/� ,

�3.4�

� � � � 0,

if we choose t=�V ,�=n, �=2�, and �=2�, for Eq. �3.3� we
end up with the result

An,�

Lm �
q���m

1

��V + �q��2��1−n/2� , 2� � n , �3.5�

where

An,� =
Sn

�2��n

�1 −
n

2�
� n

2�


2�
. �3.6�

If we introduce the notation

K: = K��,n,m� � An,�
−1 � , �3.7�

the gap equation �3.1� may be presented in the equivalent
form

K =
1

Lm �
q���m

1

��V + �q��2��1−n/2� , 2� � n . �3.8�

Several comments are in order.
First, one can relate Eq. �3.8� with a fictitious fully finite

m-dimensional reference system in which the memory of the
n extended to infinity dimensions and the memory of the
anisotropy of the system is retained only in the parameter

�: = 1 −
n

2�
, 0 
 � 
 1. �3.9�

So, instead of four, only three model parameters m ,�, and �
are relevant in order to describe the model. The conditions
�3.2� take the form

m

2�
− 1 
 � 


m

2�
. �3.10�
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Second, we emphasize that the presence of anisotropy �
�� does not lead to visible complications in Eq. �3.8� in
comparison with the “weakly anisotropic” case �=�. Since
the parameters n and � enter only in combination n

� in terms
of the reference system some specific crossover rules take
place. For example, symbolically we can write

Lm��� � �n��� ⇔ Lm��� � �ñ���, ñ: = n
�

�
, �3.11�

i.e., the finite-size behavior of the strongly anisotropic sys-
tem ����� with m finite and n infinite dimensions is equiva-
lent to a “weakly anisotropic” system ��=�� with m finite
and ñ infinite dimensions, and vice versa. Likewise, we can
write

Lm��� � �n��� ⇔ Lm��� � �m��̃�, �̃: = �
m

n
.

�3.12�

An interesting consequence of this crossover rule is the prop-
erty reduction of dimension: in the case n�m the crossover
counterpart has smaller dimension 2m. Indeed, Eqs. �3.11�
and �3.12� are true under the conditions �3.9� and �3.10� for
the model parameters n ,m, �, and �.

Third, in the particular case �=1, �=1/2 �i.e., ñ=1� and
1
m
3, from the crossover rule �3.11� follows that the gap
equation for �V, apart from a trivial rescaling of the tempera-
ture and the number of infinite dimensions, is independent of
the anisotropy. As a result, in this case it is possible to apply
the usual theory for isotropic systems. For example, the
value of the universal scaling amplitude A�m ,� ,��=��,L /L
may be taken directly from the study of the crossover coun-
terpart of the model �2.2�, i.e., the quantum spherical spin
model �7,22�. The result is A�2,1 ,1 /2�=1.5119¯ �22�.

IV. FINITE-SIZE SCALING FORM OF THE GAP
EQUATION

We will follow the approach of Ref. �18� in order to ob-
tain the finite-size scaling form of Eq. �3.8�. Due to some
significant properties of the generalized Mittag-Leffler func-
tions used in this approach, one could follow a line of con-
sideration quite close to the usual isotropic case. The corre-
sponding mathematical calculations are presented in
Appendix A.

The generalized Mittag-Leffler functions are defined by
the power series �23� �see also �18,24,25��

E�,�
� �z� = �

k=0

�
���k

��k + ��
zk

k!
, �,�,� � C, Re��� � 0,

�4.1�

where

���0 = 1,���k = ��� + 1��� + 2� ¯ �� + k − 1� =
�k + ��

���
,

�4.2�

k = 1,2, . . . .

Some necessary properties of these functions are systemized
in Appendix B.

Let us first introduce the scaling variables:

x = L2��m/2�−���K − K�
c �, y = �VL2� � �L/��,L�2�,

�4.3�

where K�
c is the inverse critical temperature �see Eq. �A19��

of the “reference” bulk system �3.8�. Then for the gap equa-
tion, the following scaling form is obtained �see Appendix
A�:

x � − a�m;�,��y�m/2�−�� + Fm,2�
� �y� +

1

y� , �4.4�

where

a�m;�,�� = −
1

�4��m/2�

� m

2�
�� −

m

2�


�m

2
���

. �4.5�

In Eq. �4.4�,

Fm,2�
� �y� =

1

�2��2���
0

�

dzz��−1E�,��
� �−

z�

�2��2� y
��Am�z� − 1 − ��

z
m/2� �4.6�

is the so-called universal scaling function �18�, and

A�z� � �
n=−�

+�

e−zn2
. �4.7�

For �=1, Eq. �4.6� reduces to the scaling function introduced
earlier by a number of authors in the finite-size scaling
theory �see �7,8� and references therein�.

Compare with Eq. �3.8�, there are complications and sim-
plifications in Eq. �4.4�. On one hand, the simplicity of the
previous expression is lacking, so that a transparent physical
interpretation is hampered. On the other hand the full set of
the model parameters �m ,� ,�=1− n

2� , and L� enters in
though complicated but well-studied special functions, so
that a subsequent analytical consideration of the finite-size
scaling properties is possible.

Our model study confirms the phenomenological assump-
tion �15� that the finite-size scaling behavior in systems with
mixed geometry Lm�����n��� is governed by the “perpen-
dicular” correlation length ��,L only.

It is well-known that the concept of the standard finite-
size scaling ceases to be valid when the dimension d of the
considered finite-size system is smaller than the lower and
bigger than the upper critical dimensions, respectively. For
isotropic systems these are dl

is=2� and dup
is =4� �recall that in

our case �=1 corresponds to a short-range interaction�. If an
anisotropic factor appears in the problem, such as the direc-
tionally dependent correlation length exponents in conjunc-
tion with more and more elongated geometries of the finite
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system, what happens is that dl
is and dup

is are shifted, e.g.,
dl

anis=dl
is−n� and dup

anis=dup
is −n�, where � : =� /�−1 is the

so-called anisotropy exponent �cf. Eq. �3.2��. As a result,
depending on the value of n� that may be either positive or
negative, the standard finite-size scaling �e.g., Eq. �4.4�� may
be relevant for different integer values of the dimensionality
d. For example, it may be the case of low-dimensional sys-
tems �1d and 2d� excluding the 3d case, etc. At this level, the
anisotropy of the system appears only in the generalized
form of the scaling equation, Eq. �4.4�, through parameter
��1.

V. FINITE-SIZE CORRECTIONS

Given the gap equation in scaling form, we are now in a
position to explore the various finite-size corrections. In this
section, for the sake of simplicity, we will consider the im-
portant particular case of slab geometry, m=1. Fixing m, we
have two independent model parameters � and � subject to
condition �3.10� jointed with Eq. �3.9�. The visualization of
the corresponding restrictions on � and � is shown in Fig. 1.

Here, we look at different regimes: the finite-size scaling
regime defined by the condition y�1, crossover to the ther-
modynamic critical behavior y�1, and the regime y�1.

A. yÈ1

We see that the finite-size scaling regime is characterized
by �V→0 and L2�→�, so that y : =�VL2�=O�1�. In order to
consider this case we will use a new representation for
F1,2�

� �y� �see Appendix C�,

F1,2�
� �y� = F1,2�

� �0� + a�1;�,��y1/2�−�

+ 2�
l=1

�
�4�2l2��� − �y + �4�2l2����

�4�2l2����y + �4�2l2���� , 1 � 2�� ,

�5.1�

and rewrite Eq. �4.4� in a form suitable for obtaining the shift

of the bulk critical temperature. Substituting Eq. �5.1� in Eq.
�4.4� �m=1� we obtain the gap equation in the form

x � F1,2�
� �0� + 2�

l=1

�
�4�2l2��� − �y + �4�2l2����

�4�2l2����y + �4�2l2���� +
1

y� .

�5.2�

Therefore when K→K�
c , simultaneously with L→�, in the

way prescribed by the equation

K = K�
c +

x

L2��1/2�−�� �5.3�

with x=O�1�, the leading-order asymptotic form of �V is
given by

�V �
y�x�
L2� , �5.4�

where y�x� is the positive solution of Eq. �5.2�. Hence at the
critical point x=0 �K=K�

c �, we obtain

��,L = A�1,�,��L , �5.5�

where A�1,� ,��=1/ �y�0��1/2� is a universal amplitude. In
systems with mixed geometry the existence of the universal
amplitude of the �finite-size� correlation length ��,L on the
level of the phenomenological scaling has been suggested in
�15�. Here this qualitative statement is made quantitative be-
ing a model confirmation of the generalized to anisotropic
scaling in �15�, the Privman-Fisher hypothesis �cf. with Eq.
�23� in �15��. The outcome of the numerical analysis of the
behavior of the universal amplitude A�1,� ,�� is shown in
Fig. 2.

The results show that the universal amplitude has a mini-
mum at a fixed �, being a rapidly increasing function of �
closer to the corresponding upper and lower borders of va-
lidity of Eq. �4.4�, defined by �����=min	1,1 /2�
 and
�
���=max	0, �1/2��−1
, respectively. As long as � goes
smaller the minimum becomes deeper and more flat. Since

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

γ

ρ

γ=1/(2ρ)
γ=1/(2ρ)-1

FIG. 1. Curves �=1/ �2�� and �=1/ �2��−1, in the �-� plane,
resulting from the upper and lower critical dimensions �left-hand
side and right-hand side of inequalities �3.2��, respectively. In the
shaded region, bounded by portions of these curves together with
the conditions 0
�
1 the considered finite-size scaling behavior
occurs.

0
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γ = 0.10
γ = 0.25
γ = 0.50
γ = 0.75
γ = 0.90

FIG. 2. The universal scaling amplitude A=A�1,� ,��, for some
values of �, as a function of �. We recall that � and � must belong
to the domain presented in Fig. 1.
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the anisotropy is captured in a number of infinite dimensions,
systems with different dimensions and different � and �, but
with the same � and �, have identical universal finite-size
scaling amplitude. As one can see the behavior of amplitude
in the “less anisotropic” case �=1/2 does not have special
properties, increasing rapidly in the short-range limit �with
�→1,��1�.

B. y�1

In this regime the correlation length is much smaller that
the characteristic system size L but we assume that it is still
much larger than the lattice spacing a. In this case one ex-
pects a crossover to the bulk critical behavior. When y→�,
we may approximate the sum in Eq. �5.2� by an integral:

�
l=1

�
�4�2l2��� − �y + �4�2l2����

�4�2l2����y + �4�2l2����

�
1

�2�z�2���
0

�

dx
� x

z
2��

− �1 + � x

z
2��

� x

z
2��+1/2�1 + � x

z
2�� , �5.6�

z: = y1/2�/�2�� .

With the use of Eqs. �A21� and �5.6� one finds the
asymptotic solution of Eq. �5.2�, which to the leading order
in x�1 is

x � − a�1;�,��y�1/2��−1, �5.7�

i.e., it recovers exactly the familiar bulk high-temperature
result.

The finite-size correction to the bulk critical behavior can
be extracted from the asymptotic form of the functions
Fd,�

� �y� at large argument y�1 �see �18,21��. The result is

F1,2�
� �y� � − y−� + �2��2��2���− 2���y−�1+��, �5.8�

where ���� is Riemann’s zeta function.
Using Eq. �5.8� for the gap equation �3.1� we obtain

x � − a�1;�,��y�1/2��−1 + �2��2��2���− 2���y−�1+��, y � 1.

�5.9�

As one can see the finite-size effects governed by the second
term on the right-hand side of Eq. �5.8� vary as an algebraic
power of the variable y. Since ��−2��=0 for �=k, k is a
natural number, there are not power-law dependent finite size
corrections if �=k. The case 0
�
1 corresponds to the
long-range interaction. For �=1, corresponding to a short-
range interaction, the result for the universal finite-size scal-
ing function is

F1,2
� �y� � − y−� + � 1

2�����y−�/2e−�y , �5.10�

which leads to an exponential fall of the finite-size correc-
tions in Eq. �5.9� rather than to a power-law one. As long as
��1, and if � is not an integer, the power-law corrections

take place in the case of so-called subleading long-range in-
teraction �26� but with strong anisotropy.

C. y�1

In this regime the correlation length is much larger that
the characteristic system size L. As a result finite-size effects
will be very important.

Whenever Eq. �5.2� has a solution y�1, use can be made
of the asymptotic expansion

�
l=1

�
�4�2l2��� − �y + �4�2l2����

�4�2l2����y + �4�2l2����

= −
�

�2��2��+2���2�� + 2��y + O�y2� . �5.11�

In obtaining the first term on the right-hand side of Eq. �5.11�
the fulfillment of the condition 2��+2��1 is used. Taking
into account Eq. �5.11�, in the limit �x−F1,2�

� �0� � �1 one
finds

y �
1

�x − F1,2�
� �0��1/� . �5.12�

Let us recall that when the number of infinite dimensions
is less than the lower critical dimension, the singularities of
the bulk thermodynamic functions are rounded and no phase
transition occurs in the finite-size system. Nevertheless, one
can define a pseudocritical temperature, corresponding to the
position of the smeared singularities of the finite-size ther-
modynamic functions, and study its shift with respect to the
bulk value of the critical temperature. In the case under con-
sideration the first term on the right-hand side of Eq. �5.2� is
identified with the shift of the finite-size pseudocritical tem-
perature. Actually, for the sake of convenience, here we
study the quantity K. The corresponding result for the pseud-
ocritical KL

c is

KL
c − K�

c = L−�F1,2�
� �0� , �5.13�

i.e., the critical shift exponent is �=1/�� in accordance with
standard finite-size scaling conjecture, see �7�. The coeffi-
cient Fd−n,�

� �0� can be evaluated analytically as well as nu-
merically for different values of the free parameters d, �, and
� using the method developed in Ref. �27�.

It is interesting to see the behavior of the universal critical
amplitude A=A�1,� ,�� calculated at the pseudocritical tem-
perature KL

c . The outcome of the numerical analysis is shown
in Fig. 3. There are several points worth noting from Fig. 3.
There is a region where the universal scaling amplitudes with
very close ���0.5� and quite different �’s have approxi-
mately equal values A. One can easily see two different be-
haviors of A as a function of �. On the right-hand side of
�=1, the amplitude at a fixed � is an increasing function of
�, being at fixed � a slowly varying function of �, close to a
constant. On the left-hand side of �=1 ��
1 corresponds to
the long-range interaction� the amplitude A exhibits a strong
�-dependence, and it becomes weaker when increasing �.
Since � must belong to the domain presented in Fig. 1, the
curves end sharply at the points on the border. For �→1 the
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initial points are not very resolvable on the scale of the pre-
sented graphs, but see the case �=0.10 and the end points for
decreasing �. Here it is seen the weaker influence of the
change of � on the variation of A in comparison to the pre-
vious case presented in Fig. 2. This can be explained by the
influence of the shift �see Eq. �5.13�� of the critical tempera-
ture near end points which in the case of Fig. 3 has been
excluded.

VI. CONCLUSIONS

The principal goal of the present study is twofold. First,
we extend the scope of systems to which the ideas of Refs.
�5,6� �see also �7�� apply; i.e., we study systems which here-
tofore have been beyond the reach of analytical methods.
Second, we in a unified way expound the finite-size scaling
philosophy. In particular, we demonstrate that finite-size
scaling in its standard form takes place for a certain class of
systems regardless of the nature of their anisotropic proper-
ties.

The statement, that finite-size scaling in systems with
mixed geometry Lm�����n��� is the naturally expected one,
is contained in �17� where different shape dependent scaling
limits have been studied. In the present study we are much
more interested in obtaining an explicit form of the scaling
equation analytically tractable in different regimes. To this
aim an appropriate technique of calculation is developed. We
show how the mathematical difficulties that arise in the con-
sidered anisotropic model with mixed geometry can be
avoided.

First, using the identity �3.4� the problem is effectively
reduced to the corresponding one related to a fully finite
reference system, Eq. �3.8�. One advantage of this presenta-
tion is evident, i.e., the number of the infinite dimensions n is
scaled by � and the behavior of the system is classified by
�m ,� ,��. This allows one to formulate crossover rules like
Eqs. �3.11� and �3.12�. In the particular case �=1/2 the prob-
lem of studying finite-size behavior is mapped onto finite-

size behavior of a system with geometry Lm�����1�1� stud-
ied earlier in the context of quantum critical phenomena
�7,14,22�.

A further step is the recognition that with the help of the
identity �A2� the appearance of ��1 in the summand of the
gap equation �3.8� is not an obstacle for our treatment.
Knowledge of the properties of the generalized Mittag-
Leffler function allows one to carry out all calculations ana-
lytically.

We show that though the system is strongly anisotropic,
the corresponding gap equation, Eq. �4.4�, for the intrinsic
scaling variable y=�VL2� has a form very similar to the iso-
tropic case with cubic geometry Lm��� �28�. We stress that
the finite-size L is scaled by the perpendicular correlation ��

only. This verified the Privman-Fisher hypothesis for
strongly anisotropic systems formulated in �15�. Let us em-
phasize that herein an important assumption is that the n
“parallel” dimensions are infinite, otherwise we would have
to deal with the two distinct correlation lengths �� and ��. An
additional assumption is the hyperscaling to be held; i.e., the
dimension d of the system to be between the lower dl

anis

=dl
is−n� and upper dup

anis=dup
is −n� critical dimensions. The

shift of isotropic critical dimensions becomes larger with in-
creasing the product n�.

The case of slab geometry m=1 is examined in detail,
both analytically and numerically. We conclude that the
finite-size contributions to the thermodynamic behavior de-
cay algebraically as a function of L only if 0
��k, where k
is a natural number. In the case �=1, the finite-size contri-
butions decay exponentially as a function of L. The phenom-
enon that the so-called subleading terms �in our terminology
the term with ��1� lead to dominant finite-size contribu-
tions, being unimportant in the bulk limit, was first discussed
in Ref. �26�. This characteristic feature of the long-range
interactions is revealed also in our consideration.

It seems interesting to check whether the here studied
finite-size scaling behavior is just a special feature of the
O��� systems or instead indicates a general property of
strongly anisotropic models with finite N on these special
finite-size geometries. Indeed, there are two possibilities for
further investigation of this issue: large-N expansion and nu-
merical simulations. Unfortunately, not much effort has been
put into the investigation of corrections of order 1 /N even
for the bulk case. For the particular case of the m-axial Lif-
shitz points one can see Ref. �29�, where obstacles arise al-
ready at the bulk level. The lack of results for finite-size
systems �Ref. �17� is restricted to the limit N→�� is due to
the additional complications arising from the combination of
the effects of the anisotropy of shape and the anisotropic
critical behavior such systems exhibit. On the numerical
simulations side, the progress has been hampered by the
same reasons. Let us note that it is far from being trivial to
extract information about correlation lengths from Monte
Carlo �MC� simulation data even in the case of isotropic
O�N� systems �30�, where a special path of data analysis was
used. In order to give a clear picture of systematic dependen-
cies on the spin dimensionality N the results obtained in �30�
were juxtaposed with MC simulations directly in the spheri-
cal model trying to match finite-N results with analytical
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calculations. Apart from the subtle problem of the equiva-
lence on a finite lattice of the N→� limit of the O�N� model
and the spherical model �see again �30��, the present model
�where exact results for comparison are available� can play a
useful role in examining similar problems that would arise in
MC simulations of strongly anisotropic systems.
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APPENDIX A: DERIVATION OF FINITE-SIZE SCALING
FORM OF THE GAP EQUATION

The normalized m dimensional sum in Eq. �3.8�,

Wm,2�
1−n/2���V,L�: =

1

Lm �
q���m

1

��V + �q��2��1−n/2� , 2� � n ,

�A1�

can be evaluated with the help of the identity �18�

1

��V + y��� = �
0

�

dte−ytt��−1E�,��
� �− �Vt�� , �A2�

in terms of the generalized Mittag-Leffler function E�,��
� �z�

�see Appendix B�. If one chooses �=�, �=1− n
2� , and y

= �q��2 the needed result is

Wm,2�
� ��V,L� = �

0

�

dxx��−1E�,��
� �− �Vx��

�� 1

L
�

q��1

exp�− q2x��m

, � � 0.

�A3�

Now let us define

QN0
�x�: =

1

L
�

q��1

exp�− q2x� =
1

aN0
�

l=−N0/2

N0/2−1

exp�−
4�2l2x

a2N0
2 
�A4�

and by using the approximating formula �5.5� of Ref. �26�,
we obtain the expression

QN0
�x� �

1
�4�x

�erf��x1/2

a
� −

2�2x

3a
exp�− ��

a
2

x�
+

1
��x

��
l=1

�

exp�−
�laN0�2

4x
�� , �A5�

valid in the large N0 asymptotic regime. The first and the
second terms in the above equation are size independent and
are precisely the infinite volume limit of QN0

�x�. The remain-
der of the calculations involves the insertion of Eq. �A5� into

Eq. �A3� and as a result we get Eq. �3.8� in finite-size scaling
form.

In order to illustrate the derivation Eq. �4.4�, first we will
consider in more detail the case m=1. We can represent the
right-hand side of Eq. �A3� as a sum of three terms.

The first one is given by

1

2�
�

−�/a

�/a

dk�
0

�

dxx��−1E�,��
� �− �Vx��exp�− xk2�

=
1

2�
�

−�/a

�/a

dk
1

��V + k2��1−n/2� , �A6�

where the definition of the erf function

erf���x�
�4�x

=
1

2�
�

−�

�

exp�− xk2�dk �A7�

and the identity �A2� have been used.
The second term is

−
2�2

3a
�

0

�

dxx��E�,��
� �− �Vx��exp�− ��

a
2

x�
= −

2���

3

��

a
2�−1

��V + ��

a
2���+1 . �A8�

The third one equals

�
0

�

dxx��−1E�,��
� �− �Vx��

1
��x

��
j=1

�

exp�− �jN0a�2/4x�� .

�A9�

The first term is exactly the bulk limit W1,2�
� ��V , � �. The

second one in the considered regime �V→0 and a→0 is of
order O�a1+2��� and can be omitted.

It is convenient to write the third term, Eq. �A9�, in terms
of the function �a particular case of the Jacobi �3 function�

A�x� � �
n=−�

+�

e−xn2
�A10�

and the function �18�

Fm,2�
� �y� =

1

�2��2���
0

�

dxx��−1E�,��
� �−

x�

�2��2� y
��Am�x� − 1 − ��

x
m/2� . �A11�

This can be done with the help of the Poisson transformation
formula

A�x� =��

x
A��2

x
 �A12�

and the identity �B2�.
After some algebra the result for the third term is
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L2��−1�F1,2�
� ��VL2�� +

1

��VL2���� . �A13�

Collecting the above results for Eq. �A3�, if m=1, we obtain

W1,2�
� ��V,L� =

1

2�
�

−�/a

�/a

dk
1

��V + k2��1−n/2�

−
2���

3

��

a
2�−1

��V + ��

a
2���+1

+ L2��−1�F1,2�
� ��VL2�� +

1

��VL2���� ,

�A14�

� � 1 −
n

2�
� 0.

In the last term of Eq. �A14� apart from the factor L2��−1

the intrinsic scaling combination

y = �VL2� = �L/��,L�2� �A15�

emerges, where ��,L is the finite-size transverse correlation
length �see �17��. The limitation m=1 is not principal. If m
�1, in view of Eq. �A5�, the product �QN0

�x��m in Eq. �A3�
contains sums of terms of the form

� 1
�4�x

�m��erf��x1/2

a
��m��exp�− �

i=1

m−m�

�liaN0�2/4x�� ,

�A16�

with 1	m�	m−1 and li�0, i=1, . . . ,m−m�. In such terms
the error function erf� �x1/2

a
� can be replaced by unity, since

the exponential function on the right-hand side of Eq. �A16�
cuts off the contribution from values of x1/2�aN0. Note
that all the other terms that contain as a multiplier
2�2x
3a exp�−� �

a
�2x� can be estimated. They are of order O�a�

and must be omitted in the considered continuum limit. As a
result instead of Eq. �A14� we get

Wm,2�
� ��V,L� �

1

�2��m�
�− �/a�m

��/a�m dmk

��V + �k�2��1−n/2�

+ L2��−m�Fm,2�
� ��VL2�� +

1

��VL2���� ,

�A17�

� � 1 −
n

2�
� 0.

Now, Eq. �3.8� can be rewritten as

K − K�
c = Wm,2�

� ��V,L� − Wm,2�
� �0, � � , �A18�

where

K�
c : = K�

c ��,�,n,m� � W1,2�
� �0, � �

=
1

�2��m�
�− �/a�m

��/a�m

dmk
1

��k�2��� . �A19�

The first term on the right-hand side of Eq. �A17� can be
presented in the form

Wm,2�
� ��V, � �

=
1

�2��m�
�− �/a�m

��/a�m

dmk
1

��V + �k�2���

� K�
c +

Sm

2�2��m�V
m/2�−��

0

�

dx
x�� − �1 + x���

x��+1−m/2�1 + x��� ,

�A20�

valid for ��,L�a. The integral over x converges, provided
m�2���m−2�, and

�
0

�

dx
x�� − �1 + x���

x��+1−m/2�1 + x��� =
1

�

� m

2�


�1 −
n

2�
�1 −

n

2�
−

m

2�
 .

�A21�

By substitution of Eq. �A17� into Eq. �A18�, taking into
account the small-argument expansion Eq. �A20�, for the gap
equation �3.8� we obtain the scaling form �4.4�.

APPENDIX B: GENERALIZED MITTAG-LEFFLER
FUNCTIONS

Let us formulate some necessary properties of the gener-
alized Mittag-Leffler functions. It might be useful to note the
relationship

−
d

dz
E�,1

� �− z�� = �z�−1E�,�
� �− z�� , �B1�

which follows from the power-series representation. In ob-
taining Eq. �A13� we have taken into account the identity

�
0

�

dxx��−1E�,��
� �− x�� = 1, � � 0 �B2�

that follows by integration of Eq. �B1� over z from zero to
infinity. Next, by subtracting and adding 1/���� to the
function E�,��

� we obtain

�
0

�

dte−ztt��−1�E�,��
� �− t�� −

1

����� =
z�� − �1 + z���

�1 + z���z�� .

�B3�

APPENDIX C: DERIVATION OF EQ. (5.1)

First, we represent the integral in Eq. �A11� as a sum of
three terms �m=1�. The first term is given by
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�y−1/�����
0

�

dtt��−1�E�,��
� �− t�� −

1

������A�4�2t

y1/�  − 1�
� S�,��y1/�� , �C1�

the second term is

−
1

2��y�−1/2��
0

�

dtt��−3/2�E�,��
� �− t�� −

1

�����
� −

1

y�−1/2�C�,�, �C2�

and the third one equals the constant �provided 1�2���

1

����
1

�2���2��
0

�

dxx��−1�A�x� − 1 − ��

x
1/2� � F1,2�

� �0� .

�C3�

Let us now calculate the function S�,��y1/�� and the constant
C�,�. Making use of the identity �B3�, we represent Eq. �C1�
as

S�,��y1/�� = 2�
l=1

�
�4�2l2��� − �y + �4�2l2����

�4�2l2����y + �4�2l2���� . �C4�

To calculate C�,�, in Eq. �C2� we first write

t−1/2 =
1

�1/2�
0

�

dxx−1/2e−tx, �C5�

then, by using the identity �B3� we take the integral over t,
and then

C�,� =
1

2�
�

0

�

dx
x�� − �1 + x���

�1 + x���x��+1/2 , �C6�

i.e., C�,�=−a�n ,1 ;� ,��. Collecting the results for Eqs.
�C1�–�C3� for Eq. �A11� we get Eq. �5.1�.
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